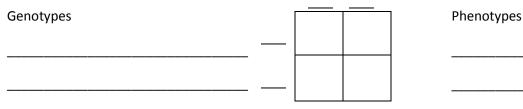
HEREDITY Review for Test (chapter 3)

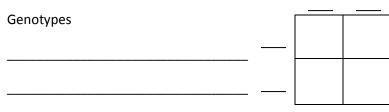
HR

The studying of how parents pass their traits to offspring is called . Genetic information in the parent is located in the______, which is a molecule that looks like a twisted ladder. When DNA is all coiled up into globs it is called a ______. There are 46 chromosomes in every human ______. If you put all this DNA end to end, it would be six ______ long! One of the chromosomes called the ______ chromosome, can be either an X or a Y. If your mom and dad both donate an X to you, you will be a ______. If your genotype is ______, you will be a boy. Since boys only have one copy of the X-chromosome, they sometimes get sex linked _____ such as hemophilia, muscular dystrophy, and ______. Girls are lucky because if one of the ______ is defective, they have a spare. If fathers have one of these disorders, he will never infect his children because he only donates his healthy Y-chromosome to them. All of his female children will become though.

The man who is considered the father of genetics is ______. He studied the ______ of peas such as seed color, plant height, and flower location. He determined that there must be an inheritance factor from each parent. Some inheritance factors always show themselves and are called . Some remain hidden in the first but may show up in the second-generation. These genes he called . If a plant has two alleles


that are exactly the same and dominant (TT) it is called . If one allele is dominant and the other is recessive it is called . If both alleles are recessive the genotype is Sometimes in genetics neither gene is dominant. This occurs in the snapdragon flower. Red flowers mated with white flowers make ______ flowers. This situation is called ______ Using a ______ Square, one can determine the ______ of having certain offspring. For example, cross a heterozygous taster (T-Dominant) with a homozygous recessive non-taster (t-recessive).

The outcome to the right shows that 50% of the offspring will be homozygous and 50% of the offspring will be ______. The ______ of these offspring are 50% tasters and 50% nontasters.


In order to understand genetics scientists had to fully understand , or the splitting of cells. First all the DNA is doubled, then it is coiled up into bundles called ______. The chromosomes line up at the ______ of the cell and are then pulled apart. Finally the cell in half so that there are now two perfect copies of the original. When organisms make sex cells they follow the above steps but then divide the nucleus more time. Sex cells then only contain ______ chromosomes instead of the usual 46. The 23 chromosomes in the father's plus the 23 chromosomes in the mother's come out to a perfect 46. This sex cell making process is called ______. Some organisms do not require sperm and egg because they go through reproduction. There are five ways to reproduce asexually. The first is and that means simple cell mitosis. All human body cells reproduce this way. Bacteria and protists do it this way too. Though many plants reproduce sexually, some reproduce asexually by sending out ______ underground to make a new plant in a new location. Some plants have specialized leaves that make ______, and some plants make round underground roots called _______ which can make a clone plant. Another asexual method is called ______, a situation where a portion of the parent actually breaks off and then re-grows itself into an entire organism somewhere else. Starfish often do this. Another method involves growing a miniature organism right on the . It then breaks off the parent and finishes growing somewhere else. This is called . The main advantage of asexual reproduction is that the _____ can grow very rapidly. The disadvantage of asexual reproduction is that all the members of the species are ______ which means that if a disease, climate change, or disaster comes on them they will all die because they are genetically pretty much the same.

HEREDITY Review for Test (chapter 3)

1. Cross a heterozygous tongue roller with a homozygous recessive non tongue roller

2. What kind of offspring will two homozygous dominant right handed people have?

Phenotypes

Name

3. If a right handed clasp is recessive, what would the parents have to be in order to make sure that all the children are right handed claspers?

Genotypes		

Phenotypes

4. What are the results if a tongue roller who is heterozygous mates with another tongue roller who is hybrid for the trait?

A person with a cleft chin marries someone without a cleft chin. If having a cleft is dominant (C) and the person with the cleft chin is homozygous dominant, how will the children turn out?

Genotypes			Phenotypes

HR