# Absolute Age Dating LAB /41

| N | lame | h | n |
|---|------|---|---|
|   |      |   |   |

### Materials

- scissors
- stopwatch
- one sheet of plain white paper
- calculator

### Objective

- Investigate absolute age dating techniques and the use of half lives.

## **Procedure/ Questions**

- Use the stopwatch to record time.
- Wait 30 seconds and then use scissors to carefully cut a sheet of paper in half. Select one piece and set the other aside.
- Repeat the previous step until ten 30 second intervals have elapsed.

Answer all questions. Use your book to help you.

- 1. What is the difference between a parent isotope and a daughter isotope?
- 2. What does the whole piece of paper used in this investigation represent?
- 3. What do the pieces of paper that you set aside in each step represent?

#### 4. What is a half-life?

- 5. What is the half-life of your paper isotope?
- 6. What percentage of parent isotope was left after each interval? Place answers in the chart below.

| Interval (Half-<br>life)                | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
|-----------------------------------------|---|---|---|---|---|---|---|---|---|---|----|
| Percentage of<br>Parent<br>Isotope left |   |   |   |   |   |   |   |   |   |   |    |

7. Create a graph below showing half life vs. percentage of parent isotope. Make sure to label each axis (2pts) and include a title (1pt). Accurate plotting of points = 10pts



- 8. What two factors must remain constant so that your model is accurate? Explain your answer.
  - 1\_\_\_\_\_
- 2\_\_\_\_\_9. What is the difference between relative age dating and radiometric dating?

NOW, USING YOUR GRAPH ABOVE...

10. Your paper rock fossil is found with 50% parent material and 50% daughter material. How many seconds old is it?

11. Your paper rock fossil undergoes radiometric dating in a lab. It has 20% parent material and 80% daughter material. How many seconds old is it?

| Radiometric Dating Methods                                           |                                                                                   |                                |                    |                                    |  |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|--------------------|------------------------------------|--|--|
| Radiometric<br>dating method                                         | Parent<br>Isotope                                                                 | Daughter isotope               | Half-life          | Effective<br>dating range          |  |  |
| Radiocarbon dating                                                   | carbon-14, <sup>14</sup> C                                                        | nitrogen-14, 14N               | 5,730 years        | less than 70,000<br>years          |  |  |
| Argon-argon<br>dating, <sup>39</sup> Ar/ <sup>40</sup> Ar            | potassium-40, <sup>40</sup> K<br>irradiated to form<br>argon-39, <sup>39</sup> Ar | argon-40, <sup>40</sup> Ar     | 1.25 billion years | 50,000 to 4.6 billion<br>years     |  |  |
| Potassium-argon<br>dating, <sup>40</sup> K/ <sup>40</sup> Ar         | potassium-40, <sup>40</sup> K                                                     | Argon-40, <sup>40</sup> Ar     | 1.25 billion years | 50,000 to 4.6 billion<br>years     |  |  |
| Rubidium-<br>strontium dating,<br><sup>87</sup> Rb/ <sup>87</sup> Sr | rubidium-87, <sup>87</sup> Rb                                                     | strontium-87, <sup>87</sup> Sr | 48.8 billion years | 10 million to<br>4.6 billion years |  |  |
| Uranium-lead<br>dating, <sup>235</sup> U/ <sup>207</sup> Pb          | uranium-235, <sup>235</sup> U                                                     | lead-207, <sup>207</sup> Pb    | 704 million years  | 10 million to<br>4.6 billion years |  |  |
| Uranium-lead<br>dating, <sup>238</sup> U/ <sup>206</sup> Pb          | uranium-238, <sup>238</sup> U                                                     | lead-206, <sup>206</sup> Pb    | 4.5 billion years  | 10 million to<br>4.6 billion years |  |  |
| Thorium-lead<br>dating                                               | thorium-232, <sup>232</sup> Th                                                    | lead-208, <sup>208</sup> Pb    | 14.0 billion years | less than 200 million<br>years     |  |  |

Look at the table below to answer the following questions.

1. If the Earth is 4.6 billion years old, why is the Thorium-lead dating technique not useful?

2. What atom (isotope) does potassium decay into?

 If you found a dinosaur bone and wanted to determine its absolute age, which radiometric dating method would be the most accurate: Radiocarbon dating or Uranium-Lead dating (<sup>238</sup>U/<sup>206</sup>Pb)? Why? [DINOSAURS BECAME EXTINCT 65 MILLION YEARS AGO]

| Α  |  |  |
|----|--|--|
| Β_ |  |  |

- 4. What is the parent isotope of lead 207? \_\_\_\_\_
- Modern humans have only been around for about 50,000 years. What method would work best for determining the age of a human bone? Why?
  A \_\_\_\_\_\_
  B \_\_\_\_\_\_