
EARTH LAYERS DRAWING LAB

/2I

Introduction: Scientists who study the earth's layers are called geologists. Since they cannot see the inside of the earth, they use geographical clues to help them. These clues are gathered from activities such as volcanoes and earthquakes. From these clues, geologists make inferences about what the inside of the earth actually looks like.

Geologists believe the earth is a made up of different layers known as the crust, mantle, and inner/outer core. These layers vary in depth, pressure, and temperature. Since pressure and temperature affect density, each layer has a different density as well. The density of each layer determines its position in the earth.

Earth Layer	Density
Crust	2.6 g/cm ³
Mantle	4.0 g/cm ³
Outer Core	10.2 g/cm ³
Inner Core	13.1 g/cm³

Analysis:

1)	What layer of Earth is least dense	?

2)	What layer of	f Earth is most dense?	

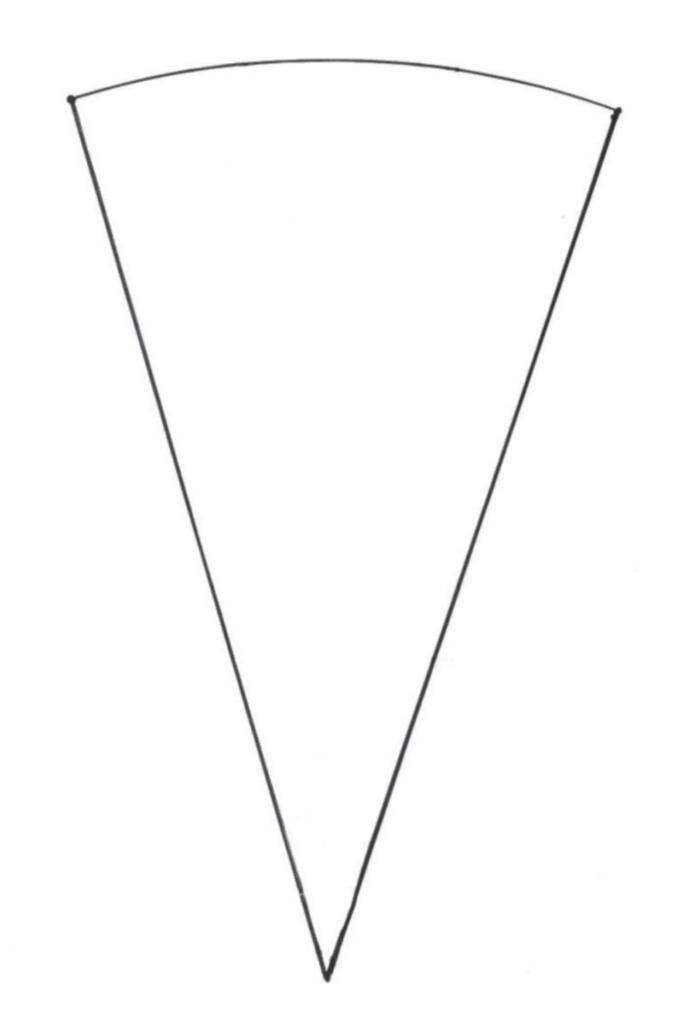
3)	What is the relationship	between	the density	and position	of each	Earth layer?

4) If you were to make a model of Earth using the materials listed below, what should you use to represent the crust?______the inner core?_____

Material	Density
Clay	2.0 g/cm ³
A Marble	2.4 g/ cm ³
Aluminum Foil	1.2 g/ cm ³

Models: A model is a tool used by scientists to represent another object that is either too large or too small to study on its own. For instance, since atoms are too small to see, scientists use models to illustrate the structure of each atomic part. Similarly, since the earth is so large, scientists construct models to represent the Earth on a much smaller scale. In this activity, you will help to create a model of Earth that is 22.2 million times smaller than the actual earth.

Procedures:


3) Use a calculator to determine the depth (in centimeters) each layer should be on your slice of the earth. Record your data below.

Earth Layer	Actual Depth	Scale Multiplier	Depth on Model (in cm)
Crust	30 km		
Mantle	2890 km	. [
Outer Core	2260 km	00385 cm/km	
Inner Core	1220 km		

- 4) Use a ruler to mark off the location of each layer on your slice
- 5) Use a pencil to label each layer of earth on your slice
- 6) Color your slice according to the following key:
 - a. Crust-brown
 - b. Mantle-yellow
 - c. Outer Core- orange
 - d. Inner Core- red

Conclusion:

The earth is made o	ut of layers that separat	te according to their		
The density of each	layer is affected by the	of th	e material and the	
amount of it is under. The thinnest and least dense layer is known				
the	The layer under the	e most pressure is known a	as the	
Such high amounts	of pressure cause this la	ayer to remain in a	state of	
matter even though	the nickel and iron are	at such a high temperatur	e. On the other	
hand, the outer cor	e remains in a	state of matter ev	en though it is	
made out of the san	ne material as the inner	core since there is not end	ough	
to change it to a sol	id.			

