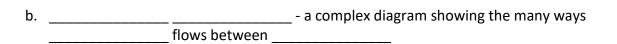

3. Many more than 10,000 _____ deep4. Trench- deepest 11,022 meters

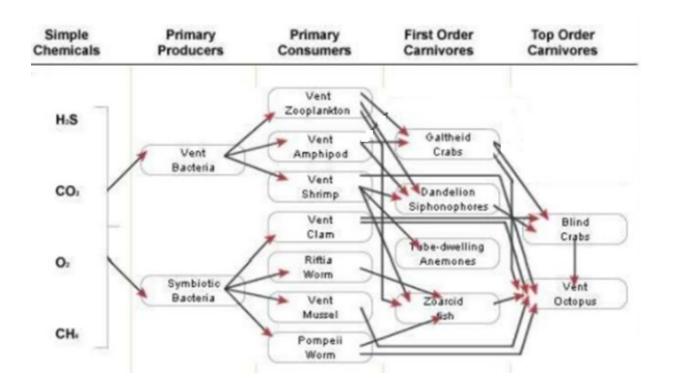
iii.			underwater volcanic						
	1.	Most of Earth's mountains are							
	2.	If they reach	the surface they make						
	3.	Deep current	s that hit the mountains flow up	the sides bringing vital					
			to the surface waters,						
	4.	Thus creating	g zones filled with	just above the mountain					
iv.			volcanic island that	flat, then sunk back					
	down	underwater							
٧.	Mid O	cean	mountain	underwater					
	1.		km long mountain cha	ain					
	2.		around earth like base	eball seams					
	3.	Form at	boundaries						
	4.	New ocean _	forms here	e					
vi.			_ vents - underwater geisers of	extremely hot mineral rich water					
	1.	Called	smokers or wh	ite smokers					
	2.	Water is hotte	er than boiling, but can't due to						
	3.	Ecosystem h	ere is based on	performed by					

The Ocean Floor

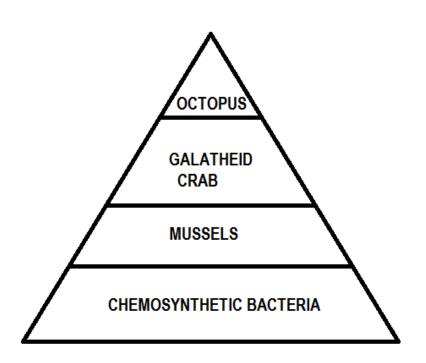

2.	Seafloo	r	- particles of various sizes that coat ar	nd the entire
	ocean			
	a.		sediment - sediment from the	
		i.	Eroded on the continents	
		ii.	Transported to the ocean by	
		iii.	Accumulates rapidly near the	
		iv.	Takes a long time to in the open	ocean
	b.		Sediments- sediment from	
		i.	and	
		ii.		
		iii.	Glass bodies of	
		iv.	and break to bits as they sink	
	C.		Sediment - minerals that	from a chemical reaction

NOT	ES: OCE	AN WA	TER PROPERTION	ES CHAPTER IS-	/56	NAME	Hr
I.	Ocean	water	has	substances in	it		
						are N	,
						he ocean is conside	
						more carbon dic	
			h				
		i.	Gases can come i	n from the			
			Gases can come i			g the ocean	
			Gases can enter b				
						n the oceans also rel	ease
	b.		affect	– s the amount of di	ssolved gases		
		i.	The colder the wa	ater, the	gases	can dissolve in it	
		ii.	The	the water, th	ne less gases cai	n dissolve in it	
	c.	Dissol	ved	—water is abo	ut 3.5% dissolv	ed solids	
		i.	Most abundant se	olids- Cl	, Na		
			Mg	, S	, C	, K	
		ii.	Source of the soli	ds- solids are brou	ght in by		
			 flowing 	tł	nat empty into t	:he ocean	
			2. Volcanic _				
			3. Chemical		of		
			4. Chemical		between sea w	ater and new sea	
II.			—measure o	f the amount of dis	solved solids in	water	
	a.	What	percent salt does o	our water have?			
		i.		_ = .1% salt			
		ii.		_ = 3.5% salt			
	b.	Factor	rs that change				
		i.		when water		, only the water mol	ecule sticks to
			the ice and the sa	lt is left behind. T	he ocean is now	/ more	(more
			concentrated wit	h salt)			
		ii.		if the evaporati	on rate is great	er than the precipita	tion rate, the
				_ increases. Wate	r is flying up in t	o the air and the sal	t stays
				_ in the water. The	e ocean is now	more	(more salty
III.	Ocean	tempe	rature layers				
	a.	What	are the temperatu	re	called?		
		i.		sea level down	to	meters- it's all	about the same
			temperature due	to mixing, and the	sun	reach down	this far
		ii.		300 meters dov	vn to	m- tempera	ature ranges
			from 22 degrees	C down to	C.		
		iii.		_ zone- 500 m to _		of ocean- tempera	ature is near
				_ but doesn't chan			
	b.	How c	loes temperature a				
		i.		_ water	becaus	se it is more dense	

a.		osystem?	and		factors in a particu
		nment	and		_ lactors ill a particu
		Biotic-			
	ii.	Abiotic-	- 	(
					·
What a	are the	(jobs	s organisms have) in eco	systems?	
a.	<u>Prima</u>	ry			
	i.	the	source of food in the ec	osystem	
	ii.	All other life	on primary		_
			in th		
	iv.	the greatest amount of	f is fo	ound in the pro	ducers
b.		<u>ry</u>			
			from the p		
			by living		with them
c.		<u>order</u>			
	i.	prey on the primary co	onsumers and in turn are	?	by other anima
d.		<u>order</u>		la 1	1
	I.		and	but are r	arely
		other creatures	h::		
			biomass in the cor amount of		thatarea a
			7/		
		population decreases as you go up	ORDER CARNIVORES FIRST ORDER CARNIVORES	energy decrea as you go u	I

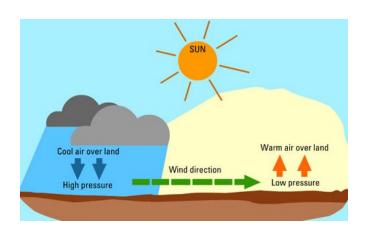

IV.	How are marin	e life z	zones categorized?	
	a. By the a	availab	pility of	
	i.		– top zone	
		1.	fully penetrates	
			The presence of sunlight allows for	
		3.	The bottom of the food chain is therefore, microscopi	С
			organisms that can do photosynthesis.	
			Zone goes down 100	
	ii.		– aka "the twilight zone"	
			Sunlight is very	
			Bright enough to find or prey	
			No	
	iii.		– bottom zone	
			No penetrates at all	
			No is possible	
			No can grow here	
		4.	No phytoplankton can grow here, but there is, micros	copic
		_	organisms that are consumers	
		5.	The bottom of the food chain is make their	own
			food by processing toxic gasses coming from deep within the earth	
	h Rythe	distanc	ce from the	
			zone	
			Covered and uncovered by	
			Place where occur	
			Constant changes in temperature,, and moisture	
	ii.		zone	
			Found along gently sloping shelf	
			"rainforest" of the	
			Very	
			Light reaches to the, so lots of photosynthesis	
	iii.		zone	
		1.	Open ocean	
			Reaches depths	
		3.	Low (minerals that are needed from ocean floor)	
		4.	Lower	
	c. By the	water		
	i.		– open ocean of any depth	
		1.	Contains animals that or freely	
	ii.		–any sea bottom, but the in particular	
			Some parts can be lit if closer to	
		2.	Animals attach to, crawl on, or burrow into ocean	
			of "ocean snow"	
	iii.		zone – deep ocean floor	
			No	
			Scavengers of "ocean"	
			near hydrothermal vents	
		٦.	near nyarothermar vents	

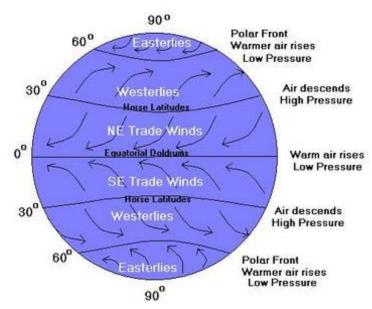
٧.	What are	e the Symbiotic	:	?		
	a		<u>beneficial</u> -	-	species benefit	
					, and the other is	(or doesn't
	С	are)				
	c		– 1 species	5	, but the other is	
VI.	How are	marine anima	ls classified?	[By how they _	and where they]
		iv	ma	ke their own foo	od by	
		v		tl	heir food (eat phytoplankton)	
	b				(independent of ocean cu	rrents)
					the ocean	·
VII.	How is e	nergy flow dia	gramed?			
	a			a simp	ole diagram showing how a single cl	hain of
	0	rganisms pass	their	into e	each other	
	1 - 1 -		- rei			



VENT SHRIMP

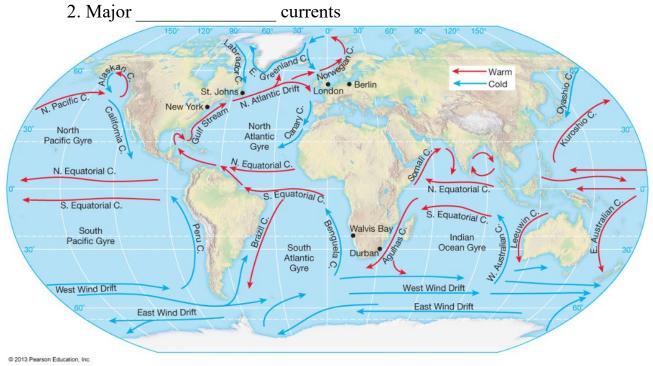
CHEMOSYNTHETIC BACTERIA


c				a diagram that shows amounts of			and
_			number	rs in an ecosystem			
	vi.	The bo	ottom of the	pyramid is wide be	cause		
		1.	the lowest t	rophic level has the	e		
		2.	the lowest t	rophic level has the	e	amount of	
	vii.	the py	ramid gets th	ninner as it rises sho	owing		
		1.		populations	;		
		2.	energy	with	every level jump		
	viii.	the		level is smallest	t because		
		1.	it has the				
		2.	it has the	ar	mount of		


8th Grade Notes 16-1 /40 **OCEAN CURRENTS**

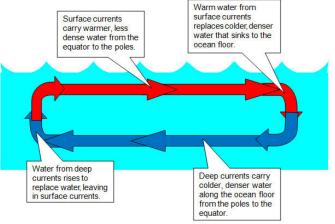
Name hr

I. Ocean currents = a horizon	talof v	of water in a well-defined			
A	$\overline{\text{CURRENTS}} = a \text{ horizont}$	al	of ocean water at		
or near the surface of t	he ocean.				
1. Three factors	that control surface curren	ıts			
a)	CURRENTS ((aka)		
• As	air in areas of low pressure	e	and air in areas of		
hig	h pressure	, wind is created.			
• Air	always moves from	pressu	re towards		
	pressure.				
• The	e wind's	energy is transferre	ed to the ocean		
sur	face water as the air flows	over it.			



_____ (____ EFFECT) = the ___ path wind or water takes due to Earth's rotation. The b) EARTH'S Coriolis effect forms the winds that drive ocean surface currents.

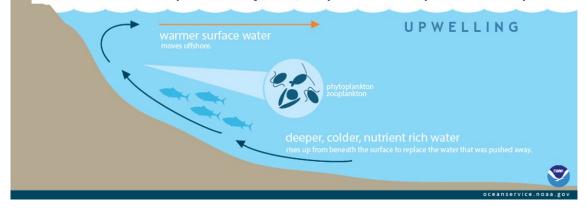
c) Location of



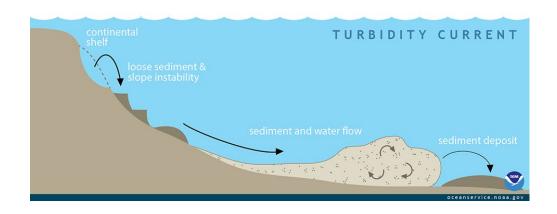
B) _____ currents = a stream-like movement of ocean water far below the surface.

1. Three factors that control deep currents

a)				
	•	cold,	polar water sinks and	d flows
	•	,	less dense equatorial water	rises and flows
	•	in general, colo	deep water from the	flows toward
		the	, and	
	•	warm shallow	water from the	flows toward the


b) wind at - surface winds can create an – a deep current that flows up to the surface along a coastline. How it works:

- 1. when wind blows along a ______, it pushes water 90 degrees in the other _____.


 2. The water moves away from the _____.
- and out to sea.
- 3. Deep, _____ water from below rises up to take its

when surface water is pushed away, cold, deep water flows up and takes its place

- c) ______ how salty the water is water that is more **saline** ______ because it is more
 - water that is less _____ stays on top because it is _____ dense
- C) _____current = a strong current caused by an underwater ____

