A.	5		IN EA	RTH'S HISTORY				
a (2		(2.4-2.1 billion years ago),			217 PTS	TOTAL		
b (850-63 c			50-635 million ye	ears ago),				
				(460-430 mya),	,			
	d	(36	60-260 mya) and	l				
		(2.			TALKING	ABOUT THI	S ONE	
В.	WHAT CAUS	SES THEM?						
		degree C drop	in	world		[this	does not	mean that
EVI		s that much						
		nge in						
		nge in						only 21
		rees?]			`	,	, , ,	,
	_	tinental						
	d.			blocking out su	unlight			
		rby				of ener	gy from	
							67	
C	WHERE DOE	ES THE WATER CO	ME FROM TO M	AAKE A GI ACIER	? ?			
C.		er to form glacie						
		drops their				feet levan	orated wa	tor hits
						reet [evap	orated wa	ter mits
		,						batuusaa
		nans then could		across a				_ between
	Sibe	ria and Alaska						
	VAULEDE ADE	CLACIEDO FOLIN	D AND HOW DIG	A DE TUEVA				
υ.		GLACIERS FOUN						
		iers move from _				and		
	b. may	be	miles thick					
Ε.	WHAT PLAN	ITS GREW NEAR T	THE GLACIERS?					
	a							
		,						
			plants					

NAME _____HR__

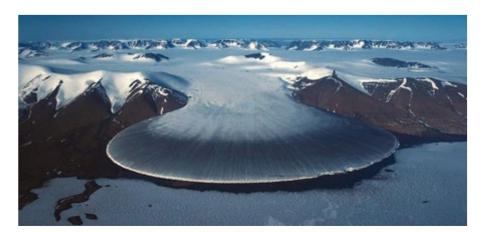
I. ICE AGE THEORY NOTES

d.	Primary consumers		
	i	,	
	ii	ox,	
	iii		
	iv.		
b.	Secondary consumers		
	i	tiger [hunted to	probably because they were
	brave and invade	d],
	ii	, [were domesticated-	
		[called cave bears and were	
G. HOW	DID HUMANS LIVE?:		
a.	Humans likely used	housing that could	and
		y were following the	
b.			ere, but evidence suggests that they
		emporary , for	
	·		

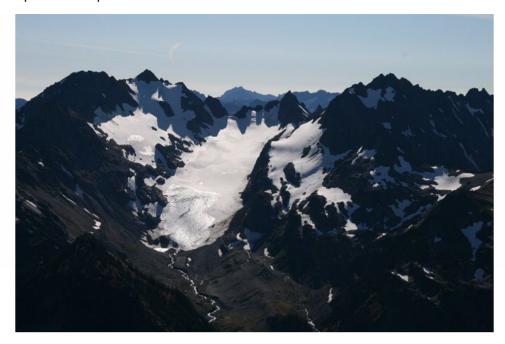
F. WHAT ANIMALS LIVED NEAR GLACIERS?

NOTES- GLACIER MOVEMENT, TYPES + GLACIATIONS

		lai ge		<u></u>		_that is on	and is movin
	a.	Snow compacts	s into	(gra	anular ice) th	en firn compacts into glacia	al
			the amou				
			– the amou				
		4 mechai	nisms responsible	for ablation			
		a					
		b		calving- p	ieces of ice b	oreak off and form icebergs	when a glacier
		r	eaches a shorelin	e			
		c		ice turns	directly into		
						can cause melting and subli	imation
GΙΔ	CIFE	R MOVEMENT—i	ultimately, mover	ment occurs d	lue to		
			deforr				
1.	2	the glacier's		hocomos to	o much to su	upport itself	
	a. h	ico lavors		becomes to	ior	ipport itself	
	υ.	dacior moves	v	vicinii cile gla(uci k of cards hai	ng	
						om layers due to	at back
	u.	top layers mov	e more		ian the botto	om layers due to	at base
2							
2.						in lawar of too to	
					r causes a th	n layer of ice to	·
	D.	the autim eleci				1:1 :4/	
	c.	the entire glaci	er moves as a			like it's on a	a water slide
	_						
	. `					_	
					****		I
				I			I .
			7				
			7		1		
			40	O m	-	40	<i>m</i>
			# A	0.m.		40	·m.
		Bedrock	A.	0 m. Meltwater	Redroc	40	<u>m.</u>
		Bedrock	A. A.	0 m. Meltwater	Bedroot	40	<u>m.</u>
			Met alosio	Om. Meltwater	Bedroc		m.
			Wet glacier	Meltwater	Bedroc	Dry glacier	w
							m. ninimal or absent,
		•	glacier	s: In		Dry glacier climates, basal melting is m	m. ninimal or absent,
		• and flow is	glacier entirely through	s: Ininternal plast	ic	Dry glacier climates, basal melting is m	
		• and flow is	glacier entirely through glacier	s: Ininternal plast	ic	Dry glacier climates, basal melting is m	
3.		and flow is predomina	glacier entirely through glacier te.	s : In internal plast s : In	ic	Dry glacier climates, basal melting is m	
3.	Gla	and flow is predomina	glacier entirely through glacier te. veve	s: In internal plast s: In , never	ic	Dry glacier climates, basal melting is m climates,	slip can
3.	Gla a.	and flow is predomina	glacier entirely through glacier te. veIf it move	s: In internal plast s: In, never	ic	Dry glacier climates, basal melting is m climates, rate as the front o	slip can of the glacier melt
3.	Gla a. b.	and flow is predomina	glacier entirely throughglacier te. veIf it move when a g	s: In	ic backward the forward	Dry glacier climates, basal melting is m climates,	slip can of the glacier melt

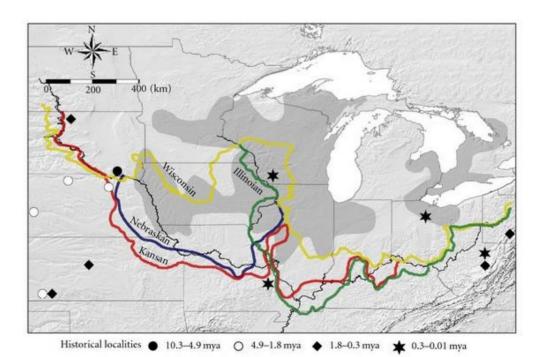

III. TYPES OF GLACIERS

- 1. _____glaciers / <u>Ice Sheets</u> -large mass of ice that covers almost _____surface features (must cover at least 30,600 square miles (50,000 km)
 - a. Examples: ______, ______,
 - b. miles thick!



- 3. _____glacier a valley glacier that enters a lowland plain and _____out like a _____
 - a. Example: Malaspina glacier in Alaska

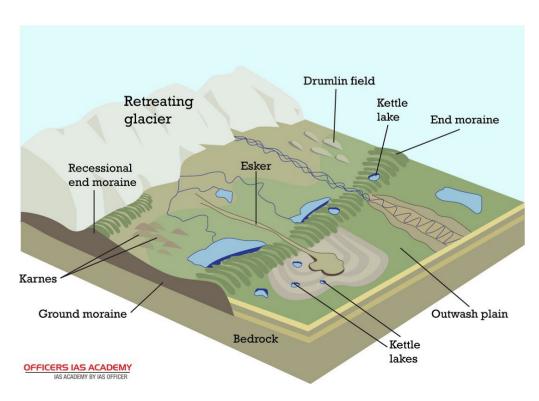
a. Example: Swiss Alps

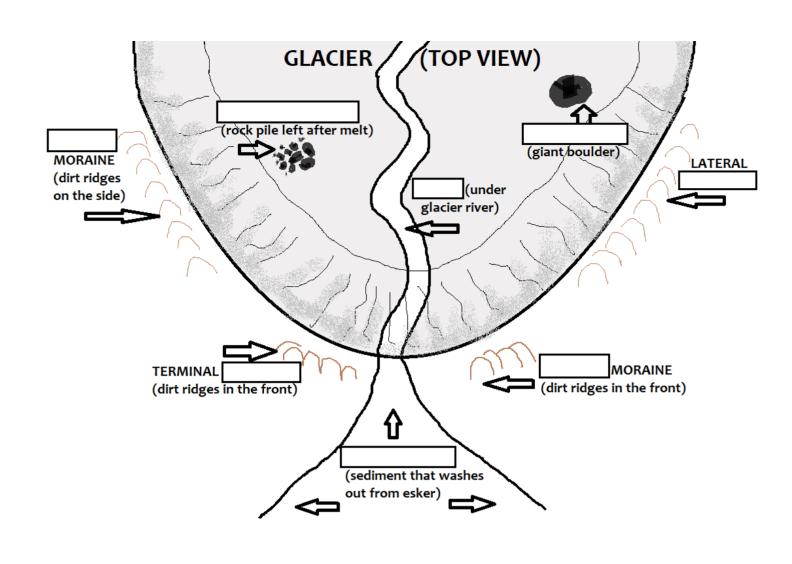

IV. 4 glaciations of the last ice age (2,000,000 ya to 10,000 ya)

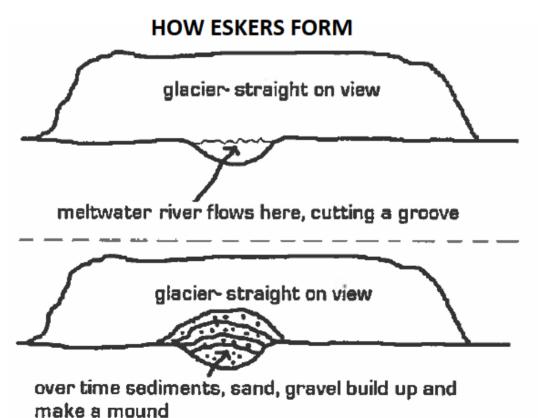
1. _______ - the temporary enlargement of a glacier during an ______age

2. Named by the ______that the ice reached a. ______= 2,000,000 ya

b. _____= 1,250,000 ya

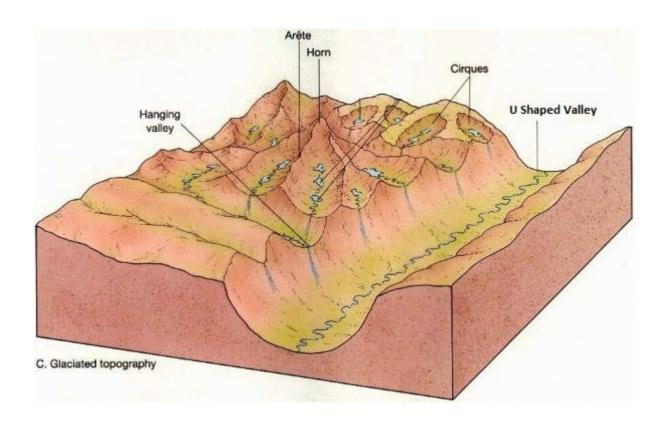

c. _____= 500,000 ya d. ____= 40,000 ya




V. GLACIAL DEPOSITION- (WHAT GLACIERS LEAVE BEHIND)

1. LANDFORMS and DEBRIS MADE BY CONTINENTAL GLACIERS

		sliding rocks an	d ice grinding up	
rock into powder				
	unsorted (large a	ind small)	and se	diments that are
placed by a glacier				
	forms when sand	l is blown by wind whe	n lake water leve	lis
	. Example: (sleeping	g bear dunes)		
		large	that	were moved long
distances by glaciers a surrounding rock.	nd are dropped off in	a new location. They	are completely di	fferent from the
	(<u>End</u>)	an accumula	ition of	at the
		gently rolling		that form when till
		a is on the Owosso mo		
		ridges of till along	sides of a glacier	[bulldozer with dirt
		that forr	n when meltwate	er carries small
sediments and deposi	ts them in a narrow p	ath	the glacier-	Example: mason
esker [most has been				
	egg shaped small		. The tapered en	d of each hill points in
the direction of glacie	r	•		
		meltwater carries	small sediments	(clay, sand, small
gravel) and deposits it	in a	like pattern [ba	ad agricultural lar	ndtoo sandy]
		flat, fertile land ca	used by sediment	ts being layed down
by				
	- formed when large	e blocks of ice break off	, create a	due
to their weight, then _		and fill in the dent. M	lany of Michigan'	s lakes were formed
this way.				
		a section of rock t	hat stands out	
than the surrounding		by		
past soft, sedimentary				



2. LANDFORMS MADE BY MOUNTAIN GLACIERS

a.		carved out	shapes on	
b.		sharp	formed by back to back	
	glaciers			
c.			u shaped valley carved by cirque glaciers	s that often have
	a steep	off, thus maki	ng great waterfalls	
d.		sharp mountain	formed by cirque glacie	rs on the sides of
	mountains			
e.		shape cre	eated by valley glacier	_ and eroding
	the	between mounta	ins	
f.			long ridges that form along the	of
	a glacier (like the	dirt on the sides of a hulldo	zer)	

3. GLACIAL EROSION

a.		water melts into cracks of rocks the	n It grips the rock,
	then the Ice moves f	orward breaking the rock up. The attacl tool.	ned rock can now be used as a
b.		-	e glacier on the rock of the Earth.
	i. Creates		if rock is soft or
	ii	(scratches) if rock is	Striations show the
	direction the	glacier moved.	
c.		is the opening	of (a crack) in rock
	due to	and thawing water. It is anoth	er method glaciers use to pulverize rock.

4.	VI.			FORMATION			
		a.	We were undersedimentary rock	for 300 million years laying down			
		b.	After oceans left, water	(due to rainfall) and wind ero	osion carved ancient		
				for 280 my (these became the	y (these became the "		
			the glaciers would follow as they				
		c.	2 million years ago an ice age beg	gan and 1 million years ago	fell off the Canadian		
			Shield and into the soft sediment	ary rock, the land 30	00		
			feet and following the ancient riv lakes.	er basins. This carved the deep	of the great		
		d.	Glaciers began to	/recede 15,000 years ago leaving m	neltwater behind which		
			the basins	; ;			
		e.	Many times lake levels rose and t shores and allowing wind to blow	ell and sand, forming	material on		