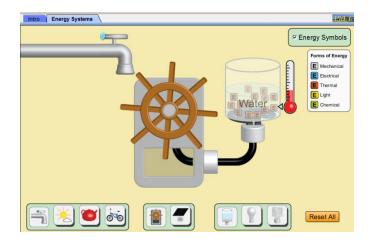
Energy Forms	&	Changes	Simu	lation
---------------------	---	----------------	------	--------

http://phet.colorado.edu/en/simulation/energy-forms-and-changes

Google "Phet energy forms". Click the first link which will load the University of Colorado's PHET page. Click the white triangular "play" button.

In this simulation, you will be able to "see" several different forms of energy and the changes (transfers) that can occur between them. You are also able to work with a system where you can manipulate the energy input, observe the process of electrical energy generation and manipulate the output. <u>Click on the "Energy Systems"</u> <u>tab</u>. We will do all of our work here. Be sure to <u>click the "Energy Symbols"</u> box so the different types of energy will be visible throughout the process.

Getting Familiar With The Options


Please experiment with the different source, generation and output options – there are many combinations to play with – then complete the questions below.

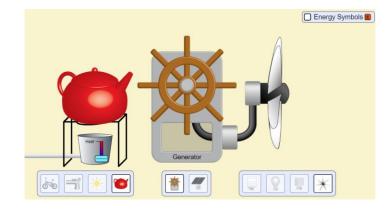
1.	Which energy sources (input) can cause the turbine (wooden wheel) to spin and generate electrical energy?				
2.	. Which energy sources (input) cause the solar panels to generate electrical energy?				
3.	Which energy output objects work with the turbine?				
4.	Which energy output objects work with the solar panels?				
5.	What happens to the amount of electrical energy that is generated when the:				
	Specify "a little" or "a lot"				
	a. Faucet is on high? b. Faucet is on low? c. There are no clouds? d. There are lots of clouds? e. Low heat on the kettle? f. High Heat on the kettle? g. The girl pedals slowly? h. The girl pedals quickly?				
6.	6. Why must the cyclist be fed in order to continue to pedal?				
7.	7. How frequently is chemical energy needed if the cyclist pedals slower?				
8.	8. If the cyclist pedals faster?				
9.	9. The Law of Conservation of Energy states that				
	·				

Exploring Energy Transfer

Set up your system as shown in the picture. Let it run for a while and then complete the sentences using the energy symbols to help you "see" the flow of the energy within each system.

10. Turbine Moved by Medium Water Flow from Faucet With A Water Heater System

In this system,	<u>kinetic</u>	kinetic energy from the moving water of the faucet turns the turbine. The		
	energy of the s	pinning turbine generates	energy in the wires.	
The electricity tran	nsforms into	energy in the stove the	at causes the temperature of the	
water to increase.	The water then beco	mes steam and gives off more	energy into the	
atmosphere.				


11. Solar Panel in Medium Cloud Cover With A Regular Light Bulb System

In this system,	energy from the sunlight causes the solar panel to create				
	energy in the wires.	This energy then flow	s into the incande	escent light bulb.	In the

light bulb, the	energy is transformed into	energy is transformed into two different types of energy:		
	energy that you can feel and	energy that you can see.		

12. Turbine Moved by Steam from Medium Heat Kettle With A Fan blade

In this system,	energy from the flames of the fire transfer energy to the kettle causing		
the liquid to become steam. The	energy of the moving steam spins the turbine w	hich	
generates ene	ergy in the wire. The electricity changes to	energy	
in the fanblade.			
Note Another form of energy is rela	eased from the kettle. What is it?		

13. Turbine Moved by Cyclist Pedaling at Medium Speed With A Fluorescent Light Bulb System

In this system, energ	gy that the cyclist ate turns into _	
energy in the cyclist's feet. This energy in the	ne legs is converted to a lot of	
energy that goes to the wooden wheel, and a	little bit of	energy that goes out
into the atmosphere. The	energy from the turning bio	evele wheel spins the

this energy into two new forms: a lot of energy and very little energy. 14. Switch out the fluorescent bulb (curly one) with the incandescent bulb (rounded) and observe the energy output. What do you notice about the difference in the energy and output of these two bu energy you want without "wasting" energy in forms that you do NOT want	nt bulb converts
14. Switch out the fluorescent bulb (curly one) with the incandescent bulb (rounded) and observe the energy output. What do you notice about the difference in the energy and output of these two bu energy output. What do you notice about the difference in the energy and output of these two bu energy you want without "wasting" energy in forms that you do NOT want	
15. In your opinion, which light bulb is more efficient? Efficient means you are getting the exact type energy you want without "wasting" energy in forms that you do NOT want	
16. What kinetic form of energy is not included in the "Energy Symbols" key that would normally be present in these examples? (Look at your energy types chart for help) 17. Look carefully at each of the four systems shown above. Knowing what we have discussed above energy conversions, identify (list) at least three different places where this form of energy (sound should be "produced". 18. In the space below, explain why this simulation is a good way to illustrate the Law of Conservation Energy. *Use a specific example to support your answer.* 19. In our county we have windmills that generate electricity for us to use in our homes. First the windows onto the blades to make them spin. The blades are attached to a generator that has a magnal a coil of wire. The spinning of the magnet makes electricity that is sent out through wires to you you turn on the TV and are entertained.	
present in these examples? (Look at your energy types chart for help) 17. Look carefully at each of the four systems shown above. Knowing what we have discussed abore energy conversions, identify (list) at least three different places where this form of energy (sound should be "produced". 18. In the space below, explain why this simulation is a good way to illustrate the Law of Conservati Energy. Use a specific example to support your answer. 19. In our county we have windmills that generate electricity for us to use in our homes. First the wi blows onto the blades to make them spin. The blades are attached to a generator that has a magna a coil of wire. The spinning of the magnet makes electricity that is sent out through wires to you You turn on the TV and are entertained.	
energy conversions, identify (list) at least three different places where this form of energy (sound should be "produced". 18. In the space below, explain why this simulation is a good way to illustrate the Law of Conservati Energy. <i>Use a specific example to support your answer</i> . 19. In our county we have windmills that generate electricity for us to use in our homes. First the wi blows onto the blades to make them spin. The blades are attached to a generator that has a magna coil of wire. The spinning of the magnet makes electricity that is sent out through wires to you You turn on the TV and are entertained.	mally be
19. In our county we have windmills that generate electricity for us to use in our homes. First the wi blows onto the blades to make them spin. The blades are attached to a generator that has a magna coil of wire. The spinning of the magnet makes electricity that is sent out through wires to you You turn on the TV and are entertained.	
blows onto the blades to make them spin. The blades are attached to a generator that has a magnet a coil of wire. The spinning of the magnet makes electricity that is sent out through wires to your You turn on the TV and are entertained.	nservation of
	a magnet near
A. Wind blows (energy)	
(
B. Blades spin (energy)	
C. Magnets spin by wire coils and make (energy)	
D. Your TV is showing a bright screen (energy) E. Your TV is making noises (energy)	